Lecture 11
Terrestrial infrared radiative processes. Part 4:

Infrared radiative transfer revisited. IR radiative heating/cooling rates

Objectives:
1. IR radiative transfer revisited.

2. Infrared radiative heating/cooling rates.

3. Concept of broadband flux emissivity.

Required reading:
L02: 4.2.2; 4.5-4.7

1. IR radiative transfer revisited.

Recall Lecture 8 where we have derived the solutions of the radiative transfer equation
for the monochromatic upward and downward intensities in the IR for a plane-parallel

atmosphere consisting of absorbing gases (no scattering)
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Recall that Eq.[8.3a, b] and Eq.[8.4a, b] have been derived the whole atmosphere with
the optical depth T,* for two boundary conditions:

Surface: assumed to be a blackbody in the IR emitting with the surface temperature T,

l, (t;, 1) =B, (T,) =B, (T,(r,)) =B, (1,)

Top of the atmosphere (TOA), T, = 0: no downward emission

Ivl (0,-u)=0

In Lecture 2, the upwelling and downwelling fluxes were defined as

1
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NOTE: Eq.[11.1] assumes that there is no dependency on @in a plane-parallel

atmosphere.

Thus, we can re-write the radiative transfer equation and its solutions in terms of the

monochromatic upward and downward fluxes. From Eq.[8.3a, b], we have
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Let’s introduce the transmission function for the radiative flux (called diffuse

transmission function or slab transmission function or flux transmission function) as
1
f — .
T, (0) = 2[T, (t; p)udu [11.3]
0

where Ty(T; ) is the monochromatic transmittance defined in Lecture 7, Eq.[7.2]

Spectral diffuse transmission function (or transmittance) may be defined as:

1
T, (1) =2[T, (t; p)pdps [11.4]
0

Using the definition of monochromatic diffuse transmittance and solution of the radiative
transfer equation expressed via the transmittance Eq.[8.4a, b], the solution for fluxes

can be written as
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NOTE: On the right side of Eq.[11.5a] for the upward flux, the first term gives the
surface emission that is attenuated to the level T and the second term gives the emission
from the atmospheric layers characterized by the Planck function multiplied by the
weighting function dva /dT . Likewise, the downward flux at a given layer

(EQ.[11.5Db]) is produced by the emission from the atmospheric layers.



2. Infrared radiative heating/cooling rates.

» Radiative processes may affect the dynamics and thermodynamics of an
atmosphere through the generation of radiative heating/cooling rates.
NOTE: The thermodynamic equation for the temperature changes in the atmosphere (i.e.
the first law of thermodynamic for moist air) includes the radiative energy exchange
term (i.e. total radiative heating/cooling rates which are solar plus infrared
heating/cooling rates). In this lecture we discuss IR radiative rates only (solar will be

discussed later in the course).

Let’s introduce the monochromatic net flux (net power per area at a given height

defined as F,(z) =F,/ (z)-F, (2) [11.6]

Also we can define total net flux:
F(z)=F'"(z)-F "' (2) [11.7]

Introducing the net flux F(z+Az) at the level z+Az, we find the net flux convergence for

the layer Az is
AF =F(z+Az)-F(2)
F(z+Az) < F(z) (hence AF < 0) => a layer gains radiative energy => heating

F(z+Az) > F(z) (hence AF > 0) => a layer losses radiative energy => cooling
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The IR radiative heating (or cooling) rate is defined as the rate of temperature change

of the layer dz due to IR radiative energy gain (or l0ss):

dT H _ 1 dF,,, _ g dF

O dt []R__cpp dz _cp dp [11.8]

where ¢, is the specific heat at the constant pressure (c, = 1004.67 J/kg/K) and p is the air

density in a given layer.

EXAMPLE Calculate longwave cooling at night for an atmospheric layer from 0 to 1
km using the upwelling and downwelling fluxes calculated with MODTRAN for US
Standard Atmosphere 1976.

Altitude | IR Upwelling flux | IR Downwelling flux
(km) (W/m?) (W/m?)
0 390 285
1 375 250

SOLUTION:

Need to find net fluxes at each altitude
F(z)=F'(z)-F (z)
At 0 km: Fper = 390 — 285 = 105 W/m?

At 1 km: Fpet =375-250=125 W/m?
Thus AF= 20 W/m?

dT A - dF o _ —20Js 'm ™
Odt O c P dz (1.17 kg / m*®)(1004 Jkg ~*K ~*)(1000 m)

dT/dt = -1.7x10° K/s = -1.5 K/day




To calculate the IR downward and upward fluxes one needs to know:
1) Atmospheric characteristics: vertical profiles of T, P and air density

ii) The vertical profiles of IR radiatively active gases, clouds and aerosols.

To calculate the IR heating/cooling rates one needs to know:

i) Profiles of IR upwelling and downwelling fluxes (to calculate the profile of the IR net
fluxes);

ii) Using the profile of net fluxes and air density, one calculates the IR radiative

heating/cooling rates

T g o__ 1 dF(2)

Odt O c,p dz

Effect of the varying amount of a gas on IR radiation under the same atmospheric

condition

Consider the standard tropical atmosphere and “dry” tropical atmosphere:

same atmospheric characteristics, except the amount of H,O
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IR fluxes for tropical (dotted lines) and dry tropical atmospheres (solid lines)
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 HyOincreases inalayer => F' increases because more IR radiation emitted in

a layer => F ' (surface) increases

 HyOincreases inalayer => F' decreases because more IR radiation absorbed

but reemitted at the lower temperature => F* (TOA) decreases

» Increase of an IR absorbing gas contributes to the greenhouse effect

IR net fluxes for tropical (dotted lines) and dry tropical atmospheres (solid lines)

-- ® - -Fnet

—a— Fnet, dry

10
9
8
e 7
< 6
§ 5
2 4 ;
< 3 Nl
2
1 - Va
0 R A/T ‘
60 110 160 210 260
Flux, W/m2




» The larger changes of net flux from one level to another (i.e., the larger slope of F(Z)

vs Z), the larger heating/cooling rates

IR cooling rates for tropical (dotted lines) and dry tropical atmospheres (solid lines)

10

9 2

8 i\\
g 7 9
X 6 ‘\ - - i - - Cooling
) 5 }K rates
E 4 “1.\‘\
< 3 L N —a— Cooling

5 w’ \\ rates,

-
1 A
o e
O I I
-3 -2 -1 0
Cooling rates, K/day

NOTE: The largest IR cooling rates for the standard tropical atmosphere are in the

surface layer.

3. Concept of broadband flux emissivity

» The broadband flux emissivity approach allows calculation of infrared fluxes
and heating/cooling rates utilizing the temperature in terms of the Stefan-

Boltzmann law instead of the Planck function.

Based on Eq.[11.5 a, b], the total upward and downward fluxes in the path length u

coordinates may be expressed as
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Let’s define the isothermal broadband emissivity as
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Using the isothermal broadband emissivity, Eq.[11.9a, b] may be approximated as
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NOTE: If the isothermal broadband emissivity is known, the broadband fluxes and

heating/cooling rates can be easily calculated from Eq.[11.11a, b].



